transformation to a solid on the application of pressure. The unit-cell length of CO_{2} at 1.0 GPa is 5.4942 (2) \AA, compared with 5.624 (2) A observed by Simon \& Peters (1980). However, the C-O bond length appears to be constant under both sets of conditions. Its value, when corrected for simple rigid-bond thermal motion (Downs et al., 1992) is $1.168(1) \AA$ [1.1486 (9) \AA, uncorrected], compared with corrected values of 1.164 (Simon \& Peters, 1980) and $1.162 \AA$ (Karle \& Karle, 1949, 1950) obtained by electron diffraction in the gas phase.

Experimental

CO_{2} was obtained as a commercial product.

Crystal data

CO_{2}
$M_{r}=44.01$
Cubic
$P a \overline{3}$
$a=5.4942(2) \AA$
$V=165.85(2) \AA^{3}$
$Z=4$
$D_{x}=1.762 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Huber four-circle diffractometer
Profile data from $\theta / 2 \theta$ scans
Absorption correction: none
596 measured reflections
78 independent reflections
43 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F
$R=0.041$
$w R=0.018$
$S=1.28$
43 reflections
6 parameters
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 18 reflections
$\theta=6.4-14.0^{\circ}$
$\mu=0.172 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Disc
0.25 mm (radius)

Colourless

$$
R_{\mathrm{int}}=0.034
$$

$\theta_{\text {max }}=30^{\circ}$
$h=-6 \rightarrow 6$
$k=-7 \rightarrow 7$
$l=-5 \rightarrow 5$
2 standard reflections frequency: 180 min intensity decay: 9%
$w=1 /\left[\sigma^{2}(F)+(0.0055 F)^{2}\right]$
Compressed CO_{2} liquid was forced into a conventional fourpin Bassett high-pressure diamond anvil cell using a gasloading apparatus at 8.3 MPa . This was conducted numerous times in order to ensure that the cell was well purged and the confined sample was pure. The cell was constructed with Be seats and $250 \mu \mathrm{~m}$ thick Inconel steel gaskets with a $250 \mu \mathrm{~m}$ diameter hole. The diamond culets were $500 \mu \mathrm{~m}$ in diameter. No pressure medium was included. The pressure in the cell was increased to $1.00(5) \mathrm{GPa}$, as measured by the pressure-dependent positions of characteristic fluorescence peaks of small included ruby chips. The sample chamber was visually observed to contain several crystals. A precession photograph demonstrated that although the reflections showed strain broadening, they could be indexed with $P a \overline{3}$ symmetry. A single crystal was obtained by heating the entire sample assembly in an oven at 473 K overnight. Attempts to obtain
strain-free crystals at higher pressures failed, and most likely will require a pressure medium.
Intensities were measured using a Huber diffractometer and SINGLE software (Finger \& Angel. 1990), which was also used for cell refinement. The peak profiles were quite sharp. indicating that the strain had been relieved during the heating process. Only peaks belonging to the $P a \overline{3}$ structure could be found. The structure determination was initiated with the atomic parameters of CO2 given by Simon \& Peters (1980) and refined with a modified version of RFINE (Finger \& Prince. 1975).

The authors are grateful to the Carnegie Institution of Washington for their postdoctoral opportunities, and to the National Science Foundation for support throigh grant EAR-9218845. The authors would also like to thank Bob Hazen for directing our attention to the dry ice II phase problem.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1190). Services for accessing these data are described at the back of the journal.

References

Aoki, K., Yamawaki, H., Sakashita. M., Gotoh. Y. \& Takemura. K. (1994). Science, 265, 356-358.

Bridgman. P. W. (1914). Phys. Rev: 3, 153-203.
Downs. R. T.. Gibbs. G. V.. Bartelmehs. K. L. \& Boisen. M. B. Jr (1992). Am. Miner. 77. 751-757.

Doyle. P. A. \& Turner. P. S. (1968). Acta Crust. A24. 390-397.
Finger. L. W. \& Angel, R. J. (1990). SINGLE. Unpublished program. Carnegie Institute of Washington, DC. USA.
Finger, L. W. \& Prince, E. (1975). A System of Fortran IV Computer Programs for Crgstal Structure Computations, p. 128. Technical Note 8.54. US National Bureau of Standards.
Karle, I. L. \& Karle. J. (1949). J. Chem. Ph:s. 17. 1052-1058.
Karle. I. L. \& Karle, J. (1950). J. Chem. Ph's. 18. 565.
Liu. L. (1983). Nature (London), 303. 508-509.
Simon. A. \& Peters. K. (1980). Acta Crast. B36. 2750-2751.

Acta Cryst. (1998). C54, 898-900

A Niobium(V) Arsenate: $\mathbf{N b}_{\mathbf{9}} \mathbf{A s O}_{\mathbf{2 5}}$

Mutlu Ulutagay, George L. Schimek and Shiou-Jyh Hwu

Department of Chemistrr: Clemson University; Clemson, SC 29634-I905, USA. E-mail: shu'u@clemson.edu
(Receired 18 July 1997: accepted 6 January 1998)

Abstract

Nonaniobium arsenic pentacosaoxide contains 3×3 ReO_{3}-type NbO_{6} octahedral columns extended along \mathbf{c}. Each column is linked to four crystallographically identical columns through shared edges of NbO_{6} octahedra and shared corners of $\mathrm{AsO}_{\downarrow}$ tetrahedra.

Comment

There are four known $A_{9} B \mathrm{O}_{25}$ compounds, where cations A are in octahedral sites and B is in a tetrahedral site: $\mathrm{Ta}_{9} \mathrm{PO}_{25}$ (Chernorukov et al., 1981; Waring \& Roth, 1964), $\mathrm{Nb}_{9} \mathrm{PO}_{25}$ (Roth et al., 1965; Benabbas et al., 1991), $\mathrm{Ta}_{9} \mathrm{AsO}_{25}$ (Chernorukov et al., 1981) and $\mathrm{Nb}_{9} \mathrm{AsO}_{25}$ (Chernorukov et al., 1979). $\mathrm{Nb}_{9} \mathrm{PO}_{25}$ is the only compound that has been studied by single-crystal X-ray diffraction. Its structure was first reported by Roth et al. (1965) in the space group $\overline{1} \overline{4}$. Benabbas et al. (1991) reported a revised structure in the space group $I 4 / m . \mathrm{Nb}_{9} \mathrm{AsO}_{25}$ is a decomposition product of tetragonal NbAsO_{5} at 1193 K (Chernorukov et al., 1979). It was proposed to be isostructural with $\mathrm{Nb}_{9} \mathrm{PO}_{25}$ (Levin \& Roth, 1970). The crystal structure of $\mathrm{Nb}_{9} \mathrm{AsO}_{25}$ was also solved in space group $14 / \mathrm{m}$. The structure contains edge-shared $3 \times 3 \mathrm{ReO}_{3}$-type octahedral columns extending along \mathbf{c} (Fig. 1). The neighboring columns are displaced with respect to each other, giving rise to edgesharing NbO_{6} octahedra at the interface.

Fig. 1. Projected view of the extended structure of $\mathrm{Nb}_{9} \mathrm{AsO}_{25}$ onto the $a b$ plane. Each AsO_{4} tetrahedron shares corners with the four neighboring $3 \times 3 \mathrm{NbO}_{6}$ columns (indicated by shaded squares).

The $\mathrm{Nb}(1)$ atom was refined at half occupancy because it was found to be displaced by approximately $0.2 \AA$ from the origin in the \mathbf{z} direction, thus positioning it too close to its symmetry-related partner. The As atom resides on a $\overline{4}$ site; thus the inversion operator generates another As at a distance of $1.92 \AA$ from it (half the' length of the c axis). Therefore, its occupancy was also set at 0.5 . Data collection on a cell with a doubled c axis showed no indication of a superstructure.

The geometry about $\mathrm{Nb}(1)$ represents a disordered octahedron, with $\mathrm{O}(1)$ in the axial position. The thermal motion of $\mathrm{O}(1)$ is quite anisotropic ($U_{11} / U_{33}=7$). This could be a result of $\mathrm{O}(1)$ being refined in its average
position ($2 b$ site). Refinements attempting to model a potential disorder were unsuccessful, perhaps due to the disordered nature of $\mathrm{Nb}(1)$ or the relatively small deviation of the atomic position by a small amount of electron density for $\mathrm{O}(1)$.

Within the NbO_{6} octahedra (Fig. 2) bond distances range from 1.714 (5) to 2.286 (5) \AA and cis bond angles vary from $74.2(1)$ to $98.4(2)^{\circ}$, while trans angles are quite distorted at $143.3(3)$ to $180.0(1)^{\circ}$. These distortions would appear to support the observation that $\mathrm{O}(1)$ is probably disordered, since this reported mode imposes crystallographic linearity upon the $\mathrm{O}(1)-$ $\mathrm{Nb}(1)-\mathrm{O}\left(1^{1}\right)$ angle [symmetry code: (i) $\left.x, y, z-1\right]$.

Fig. 2. Unique metal-oxide coordination polyhedra (70% probability ellipsoids) as viewed nearly parallel to the c axis. (Symmetry codes are as given in Table 1.)

Experimental

$\mathrm{Nb}_{9} \mathrm{AsO}_{25}$ was synthesized from a stoichiometric mixture of $0.0916 \mathrm{~g}(0.3446 \mathrm{mmol})$ of $\mathrm{Nb}_{2} \mathrm{O}_{5}$ powder (Aesar, 99.9985%) and $0.1584 \mathrm{~g}(0.6892 \mathrm{mmol})$ of $\mathrm{As}_{2} \mathrm{O}_{5}$ powder (Aesar, 99.9%). The mixture was loaded in a fused-silica ampoule inside a dry box. The ampoule was subsequently sealed under vacuum. After initial heating at 473 K for 15 h , the temperature was increased at $20 \mathrm{Kh}^{-1}$ to 573 K , and left for 2 d . The reaction was ultimately heated to 1223 K at $20 \mathrm{~K} \mathrm{~h}^{-1}$ with an intermediate soaking for 2 d at 1113 K . After 3 d at 1223 K , the reaction was cooled slowly at $1.2 \mathrm{~K} \mathrm{~h}^{-1}$ to 923 K , then cooled at $15 \mathrm{~K} \mathrm{~h}^{-1}$ to 298 K . Colorless needle crystals of the title compound were obtained from the bottom of the ampoule.

Crystal data

$\mathrm{Nb}_{9} \mathrm{AsO}_{25}$
$M_{r}=1311.1$
Tetragonal
I4/m
$a=15.6684(8) \AA$
$c=3.829(1) \AA$
$V=940.1(3) \AA^{3}$
$Z=2$
$D_{\lambda}=4.632 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=12.2-16.4^{\circ}$
$\mu=7.149 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Needle
$0.120 \times 0.072 \times 0.024 \mathrm{~mm}$
Colorless

Data collection

Rigaku AFC-7 diffractometer
$\omega-2 \theta$ scans
Absorption correction: empirical via ψ scans (Sheldrick, 1990)
$T_{\text {min }}=0.42, T_{\text {max }}=0.84$
1152 measured reflections 620 independent reflections

Refinement

Refinement on F
$R=0.026$
$w R=0.052$
$S=1.69$
559 reflections
57 parameters
$w=1 /\left[\sigma^{2}(F)+0.0005 F^{2}\right]$
$(\Delta / \sigma)_{\max }=0.001$

559 reflections with

$$
F>4 \sigma(F)
$$

$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.50^{\circ}$
$h=0 \rightarrow 20$
$k=0 \rightarrow 19$
$l=-4 \rightarrow 4$
3 standard reflections every 100 reflections intensity decay: 0.2%
$\Delta \rho_{\text {max }}=0.93 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.06 \mathrm{e}^{\AA^{-3}}$
Extinction correction: Larson (1970)
Extinction coefficient: 0.00028 (5)

Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Nb}(1)-\mathrm{O}(1)$	1.714 (5)	$\mathrm{Nb}(3)-\mathrm{O}\left(4^{\prime \prime \prime}\right)$	1.990 (2)
$\mathrm{Nb}(1)-\mathrm{O}\left(1^{\text {i }}\right.$)	2.115 (5)	$\mathrm{Nb}(3)-\mathrm{O}\left(5^{\prime \prime}\right)$	2.286 (5)
$\mathrm{Nb}(1)-\mathrm{O}(2)$	2.012 (5)	$\mathrm{Nb}(3)-\mathrm{O}(6)$	1.770 (5)
$\mathrm{Nb}(2)-\mathrm{O}(2)$	1.816 (5)	$\mathrm{Nb}(3)-\mathrm{O}(7)$	2.015 (5)
$\mathrm{Nb}(2)-\mathrm{O}(3)$	1.843 (5)	$\mathrm{Nb}(1)-\mathrm{Nb}(2)$	3.818 (5)
$\mathrm{Nb}(2)-\mathrm{O}(4)$	2.253 (5)	$\mathrm{Nb}(2)-\mathrm{Nb}\left(3^{\prime}\right)$	3.387 (5)
$\mathrm{Nb}(2)-\mathrm{O}(5)$	1.987 (1)	$\mathrm{Nb}(2)-\mathrm{Nb}\left(3^{\prime \prime}\right)$	3.804 (5)
$\mathrm{Nb}(2)-\mathrm{O}(6)$	2.132 (5)	As-O(7)	1.705 (4)
$\mathrm{Nb}(3)-\mathrm{O}\left(3^{\text {i }}\right.$)	1.970 (5)		
$\mathrm{O}(1)-\mathrm{Nb}(1)-\mathrm{O}\left(1^{\prime}\right)$	180.0 (1)	$\mathrm{O}(5)-\mathrm{Nb}(2)-\mathrm{O}\left(5^{\text {'1" }}\right)$	149.0 (3)
$\mathrm{O}(1)-\mathrm{Nb}(1)-\mathrm{O}(2)$	95.7(1)	$\mathrm{O}(6)-\mathrm{Nb}(2)-\mathrm{O}(5)$	84.2 (1)
$\mathrm{O}(2)-\mathrm{Nb}(1)-\mathrm{O}\left(1^{\prime}\right)$	84.3 (1)	$\mathrm{O}\left(3^{11}\right)-\mathrm{Nb}(3)-\mathrm{O}\left(4^{11}\right)$	89.0 (2)
$\mathrm{O}(2)-\mathrm{Nb}(1)-\mathrm{O}\left(2^{\text {II }}\right)$	89.4 (1)	$\mathrm{O}\left(3^{\prime \prime}\right)-\mathrm{Nb}(3)-\mathrm{O}\left(5^{\prime \prime}\right)$	86.0 (2)
$\mathrm{O}\left(2^{\prime \prime 1}\right)-\mathrm{Nb}(1)-\mathrm{O}\left(2^{\prime \prime}\right)$	89.4 (1)	$\mathrm{O}\left(4^{\prime \prime}\right)-\mathrm{Nb}(3)-\mathrm{O}\left(4^{\prime \prime \prime}\right)$	148.3 (3)
$\mathrm{O}(2)-\mathrm{Nb}(1)-\mathrm{O}\left(2^{\prime \prime}\right)$	168.5 (3)	$\mathrm{O}\left(5^{\prime \prime}\right)-\mathrm{Nb}(3)-\mathrm{O}\left(4^{\prime \prime}\right)$	74.2 (1)
$\mathrm{O}(2)-\mathrm{Nb}(2)-\mathrm{O}(3)$	98.4 (2)	$\mathrm{O}(6)-\mathrm{Nb}(3)-\mathrm{O}\left(3^{\prime \prime}\right)$	94.8 (2)
$\mathrm{O}(2)-\mathrm{Nb}(2)-\mathrm{O}(4)$	170.6 (2)	$\mathrm{O}(6)-\mathrm{Nb}(3)-\mathrm{O}\left(4^{\prime \prime \prime}\right)$	105.8 (1)
$\mathrm{O}(2)-\mathrm{Nb}(2)-\mathrm{O}(5)$	104.2 (1)	$\mathrm{O}(6)-\mathrm{Nb}(3)-\mathrm{O}\left(5^{\prime \prime}\right)$	179.2(1)
$\mathrm{O}(2)-\mathrm{Nb}(2)-\mathrm{O}(6)$	88.6 (2)	$\mathrm{O}(6)-\mathrm{Nb}(3)-\mathrm{O}(7)$	95.3 (2)
$\mathrm{O}(3)-\mathrm{Nb}(2)-\mathrm{O}(4)$	91.0 (2)	$\mathrm{O}(7)-\mathrm{Nb}(3)-\mathrm{O}\left(3^{\prime \prime}\right)$	169.9 (2)
$\mathrm{O}(3)-\mathrm{Nb}(2)-\mathrm{O}(5)$	94.0 (1)	$\mathrm{O}(7)-\mathrm{Nb}(3)-\mathrm{O}\left(4^{\prime \prime \prime}\right)$	88.2 (2)
$\mathrm{O}(3)-\mathrm{Nb}(2)-\mathrm{O}(6)$	173.0 (2)	$\mathrm{O}(7)-\mathrm{Nb}(3)-\mathrm{O}\left(5^{\prime \prime}\right)$	83.9 (2)
$\mathrm{O}(4)-\mathrm{Nb}(2)-\mathrm{O}(5)$	75.0 (1)	$\mathrm{O}(7)-\mathrm{As}-\mathrm{O}\left(7^{18}\right)$	108.4 (1)
$\mathrm{O}(4)-\mathrm{Nb}(2)-\mathrm{O}(6)$	82.1 (2)	$\mathrm{O}(7)-\mathrm{As}-\mathrm{O}\left(7^{\text {x }}\right.$)	111.7 (2)

Symmetry codes: (i) $x, y, z-1$; (ii) $-y, x, z$ (iii) $y-\frac{1}{2}, \frac{1}{2}-x, \frac{1}{2}-z$; (iv) $y-\frac{1}{2}, \frac{1}{2}-x,-\frac{1}{2}-z:(\mathrm{v}) \frac{1}{2}-y, \frac{1}{2}+x, \frac{1}{2}+z ;$ (vi) $y,-x,-z$ (vii) $-x,-y,-z \because$ (viii) $x, y, 1+z:(\mathrm{ix}) \frac{1}{2}-y, \frac{1}{2}+x, z-\frac{1}{2}:(\mathrm{x})-x, 1-y,-z$.

The structure was solved by direct methods and refined by full-matrix least-squares techniques. All atoms were refined with anisotropic displacement parameters. The maximum and minimum residual electron-density peaks were located near $\mathrm{O}(3)$.

Data reduction: SHELXTL-Plus (Sheldrick, 1990). Program(s) used to solve structure: SHELXTL-Plus. Program(s) used to refine structure: SHELXTL-Plus. Molecular graphics: SHELXTL-Plus.

Financial support from the National Science Foundation (DMR-9612148) and the Turkish Government (MU) is gratefully acknowledged.

Acta Cryst. (1998). C54, 900-902

$\mathbf{L i}_{3} \mathbf{A s S}_{3}$

Do-Young Seung, ${ }^{a}$ Pierre Gravereau, ${ }^{\text {, }}$ Louis Trutt ${ }^{b}$ and Alain Levasseur ${ }^{a}$
${ }^{a}$ ICMCB du CNRS et ENSCPB, Université de Bordeaux I, BP 108, 33402 Talence CEDEX, France, and ${ }^{\text {h }}$ ICMCB du CNRS. Université de Bordeaux I, Av. du Docteur A. Schweitzer, 33608 Pessac CEDEX, France. E-mail: graver@chimsol.icmcb.u-bordeaux.fr

(Received 23 Januar. 1997; accepted 16 Januarr 1998)

Abstract

The structure of lithium trithioarsenate (3-) consists of AsS_{3} pyramids in which all S atoms are non-bridging. The Li atoms are involved in LiS_{4} tetrahedra and LiS_{3+2} distorted trigonal bipyramids. The tetrahedra are linked together via corners. This structure appears to be a new member of the $M_{3} A X_{3}$ group of compounds.

Comment

Sulfide glasses with a high alkali content are studied because of their high ionic conductivities, e.g. $10^{-3} \Omega^{-1} \mathrm{~cm}^{-1}$ at room temperature for thioboratebased glasses (Ménétrier et al., 1991). Lithium arsenic sulfide based glasses, designated $x \mathrm{Li}_{2} \mathrm{~S} .(1-x) \mathrm{As}_{2} \mathrm{~S}_{3}$, have been synthesized recently, giving homogeneous glasses for $0.67<x<0.75$ (Shastry et al., 1993). The elucidation of the structural evolution occurring on the

